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1. INTRODUCTION

In the context of the derivation of the characteristic equation of a continuous structure,
discretized according to the assumed-modes method to which several spring}mass systems
are attached, Cha and his co-worker have introduced a new approach [1, 2].
They assumed that the discretized continuous system has n degrees of freedom (d.o.f.) and

r additional spring}mass systems are to be attached to this system, where, in general r�n.
The free vibration of such a combined system is governed by the solution of a generalized
eigenvalue problem of order (n�n), whose sti!ness and mass matrices consist of diagonal
matrices modi"ed by a total of r rank-one matrices. They manipulated the general
eigenvalue problem such that the eigenfrequencies governing free vibrations can be
calculated by solving a much smaller characteristic determinant of order (r�r), each
element of which involves a sum of n terms, instead of "nding the roots of a much larger
determinant of order (n�n).
The present study deals with a quite di!erent mechanical system. It consists of a

proportionally damped mechanical system with n d.o.f. to which r additional viscous
dampers are attached, for some reason. Here, making use of the above approach, the (n�n)
characteristic determinant of the combined system is reduced to a determinant of order
(r�r), where it is assumed that r�n, which is a more frequently encountered case in
practice. As a result, an alternative formulation has been presented for the characteristic
equation of the previously mentioned system. This formulation can be very convenient for
numerical calculations at higher n (d.o.f.) values.

2. THEORY

The motion of a linear discrete mechanical system with n d.o.f. is governed in the physical
space by the matrix di!erential equation

MqK (t)#D� q� (t)#Kq(t)"0, (1)

whereM,D� andK are the (n�n) mass, damping and sti!ness matrices, respectively, and q is
the (n�1) vector of the generalized co-ordinates. It is assumed that the dampingmatrixD� is
a linear combination of the mass and sti!ness matrices

D� "�M#�K, (2)

i.e., the mechanical system is proportionally damped, where � and � are some given scalars.
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Suppose that r new viscous dampers are added to the mechanical system, for some
reason, such that the modi"ed damping matrix of the system can be written as

D"D� #
�
�
���

d
�
d�
�

(3)

where the vectors d
�
include both damping constant and the orientation information in the

physical space [3].
The aim of this study is to obtain the characteristic equation of the modi"ed system and

then to reduce it to a compact form as much as possible.
The transformation

q"��, (4)

where � is the modal matrix of the undamped system, results in the following equation of
motion in the modal space:

�K#�D� �#
�
�
���

d*
�
d*�
� ��� #���"0. (5)

The relations

��M�"I, ��K�"��"diag(��
�
), i"1,2, n (6)

are used which are due to the mass orthonormalization of the mode vectors. I denotes the
(n�n) unit matrix and �

�
is the ith eigenfrequency of the undamped system. Additionally,

the de"nitions

D�
�
"�I#���, d*

�
"��d

�
(7)

are introduced. It is worth noting that the "rst part of the transformed damping matrix, i.e.,
D�

�
is a diagonal matrix.
If a solution of the equation of motion in the modal space, equation (5) is assumed to be in

the form of

�"�� e�� (8)

where � and �� represent an eigenvalue and the corresponding eigenvector, respectively, the
eigenvalue problem

�(��I#�D�
�
#��)#�

�
�
���

d*
�
d*�
� ��� "0 (9)

is obtained. This means that the eigenvalues � are obtained from the characteristic equation

det�(��I#�D�
�
#��)#�

�
�
���

d*
�
d*�
� �"0. (10)
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In the above equation, the sum of the "rst three matrices is a diagonal matrix. Hence, the
matrix determinant which is to be equated to zero, consists of a diagonal matrix modi"ed
by r diadic products, i.e., r rank-one matrices. In the "rst step, equation (10) can be
reformulated as

det (��I#�D�
�
#��) det�I#

�
�
���

�(��I#�D�
�
#��)��d*

�
d*�
� �"0, (11)

where the "rst determinant can be written in the form

det(��I#�D�
�
#��)"

�
�
���

(��#�dJ
��

#��
�
). (12)

Now, making use of the formal similarity between equation (19) of reference [2] and the
above equation (11), the latter can be expressed as

�
�
���

(��#�dJ
��

#��
�
) detB"0, (13)

where the (i, j )th element of the matrix B, of size (r�r) is given by

b
��
"

�
�
���

d*
��
d*
��

��#�dJ
��

#��
�

#

1

�
	
��
, i, j"1,2 , r. (14)

It is worth noting that each element of the matrix B consists of a sum of n terms. Further,
d*
��
denotes the kth element of the (n�1) vector d*

�
, de"ned in equation (7) and 	

��
represents

the Kronecker delta.
Recognizing that the eigenvalues of the modi"ed system will be di!erent from those of the

original system, the characteristic equation simpli"es to

detB"0. (15)

It is quite in order to remember that eigenvalues � can be obtained directly from the
solution of the eigenvalue problem of the following matrix A resulting from the state-space
formulation

A"�
0

!M��K

2
2
2

I

!M��D� . (16)} } } } } } } } } } } } } } } } } } } } }

0 and I denote the (n�n) zero matrix and unit matrix respectively. Whereas here, one has to
"nd the eigenvalues of a matrix of size (2n�2n), in (15) it is necessary to "nd the roots of
a determinant of size (r�r), where in practice it is usually r�n.
In the special case of only one additional viscous damper, i.e., r"1, equation (15)

reduces to

b
��

"

�
�
���

d*�
��

��#�dJ
��

#��
�

#

1

�
"0, (17)
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which can be reformulated as

1#�
�
�
���

d*�
��

��#�dJ
��

#��
�

"0. (1

This equation corresponds to equation (9) in reference [4], written here in the mod
space.

3. NUMERICAL EVALUATIONS

This section is devoted to the testing of the reliability of the expressions obtained. T
simple system with 4 d.o.f. in Figure 1 is taken as an illustrative example. The physic
parameters are chosen as m

�
"m, m

�
"2m, m

�
"3m, m

�
"m with m"3 kg; k

�
"

k
�
"2k, k

�
"4k, k

�
"k and k

	
"k with k"2N/m. It is assumed that the damping matr

of the original system is mass-proportional, such that c
�
"2m

�
, c

�
"2m

�
, c

�
"2m

c
�
"2m

�
. In other words, in equation (2) �"2 and �"0 are chosen. It is assumed furth

that two relative viscous dampers of constants c
	
"2, c



"4N/m/s are to be add

between the masses m
�
, m

�
and m

�
, m

�
, respectively, as depicted as dashed lines in Figure

The mass, sti!ness and damping matrices of the original system are

M"diag(3, 6, 9, 3), K"

6 !4 0 0

!4 12 !8 0

0 !8 10 !2

0 0 !2 4

, D� "diag(6, 12, 18, 6).

The damping matrix of the modi"ed system reads as

D"D� #d
�
d�
�
#d

�
d�
�

"diag (6, 12, 18, 6)#

�2
!�2

0

0

[�2!�2 0 0]

#

0

0

�4
!�4

[0 0�4!�4]
Figure 1. Sample system with four degrees of freedom.



TABLE 1

Eigenvalues � of the modi,ed system in Figure 1

Eigenvalues of A given in equation (16) Roots of equation (15)

!3)30822599 !3)30822599
!1)92345123 !1)92345123

!1)27002504$0)48534308i !1)27002504$0)48534308i
!1)23681637$1)07151904i !1)23681637$1)07151904i

!0)46498404 !0)46498404
!0)06743369 !0)06743369
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"

8 !2 0 0

!2 14 0 0

0 0 22 !4

0 0 !4 10

.

The solution of the eigenvalue problem of the undamped system yields

�"

0)16702739 0)23699340 !0)38616296 0)31646087

0)23370715 0)12999193 !0)06605818 !0)30130723

0)24349274 !0)04719554 0)18178137 0)12864878

0)13539191 !0)48650735 !0)27631637 !0)04429703

,

��"diag (0)13438064, 1)26866073, 1)77191603, 3)26948704)

for the modal matrix and the matrix of the squares of the eigenfrequencies respectively.
Further results are

D�
�
"diag (d�

��
)"diag(2, 2, 2, 2),

d*
�
"��d

�
"[!0)09429942 0)15132292 !0)45269651 0)87365603]�,

d*
�
"��d

�
"[0)21620167 0)87862361 0)91619548 0)34589162]�.

The eigenvalues � of the modi"ed system in Figure 1 are given in Table 1. The real and
complex numbers in the "rst column are the eigenvalues obtained directly by solving the
eigenvalue problem of matrix A de"ned in (16). The numbers in the second column are
obtained by solving equation (15), where B is a (2�2) matrix each element of which consists
of a sum of four terms. Both numerical operations are carried out with MATLAB. The
agreement of the numbers in both columns is excellent. This in turn justi"es clearly the
validity of the characteristic equation obtained via the new approach.

4. CONCLUSION

This study is concerned with a proportionally damped linear mechanical system with
n d.o.f. to which r additional viscous dampers are attached, for some reason. Making use of
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a recently developed approach, the (n�n) characteristic determinant of the above described
combined system is reduced to a much smaller determinant of order (r�r) where r�n is
a frequently encountered case in practice.
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